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Abstract 

We describe a general algebraic formulation for a wide range of combinatorial problems 
including SATISFIABILITY, GRAPH COLORABILITY and GRAPH ISOMORPHISM. In this formulation 
each problem instance is represented by a pair of relational structures, and the solutions to 
a given instance are homomo~hisms between these relational structures. The corresponding 
decision problem consists of deciding whether or not any such homomo~hisms exist. We then 
demonstrate that the comptexity of solving this decision problem is determined in many cases 
by simple algebraic properties of the relational structures involved. This result is used to identify 
tractable subproblems of SATISFIABILITY, and to provide a simple test to establish whether a given 
set of Boolean relations gives rise to one of these tractable subproblems. @ 1998-Elsevier 
Science B.V. All rights reserved 

Keywords: Complexity; Satisfiability; Relational structure; Closure; Homomorphism 

1. Introduction 

In this paper we show how a very wide range of combinatorial problems, including 

SATISFIABILITY, GRAPH COLORABILITY and GRAPH ISOMORPHISM can be expressed very natu- 

rally in the framework of universal algebra. In this framework, each instance of a prob- 

lem is specified by a pair of relational structures. The first element of this pair indicates 

which subsets of variables in the problem are constrained in some way. The second 

element of the pair indicates which combinations of values are allowed for these sub- 

sets. A solution to the problem instance is a homomorphism between the two structures. 

By expressing problems in this standard form, we are able to obtain general results 

about a wide range of combinatorial problems. In particular, we describe a partial 

ordering on problem classes arising from the algebraic properties of the relations in- 

volved, and show that this ordering is a refinement of the notion of reducibility. Using 
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these results we are able to establish that the complexity of certain classes of decision 
problems is completely determined by these simple algebraic properties of relations. 

As an example of this, we consider the complexity of the GENERALIZED SATISFIABILITY 

problem, first described by Schaefer in 1978 [ 151. Each instance of this problem is 
specified by a formula in propositional logic containing relation symbols corresponding 
to some fixed set of Boolean relations. Schaefer demonstrated that the problem of 
determining whether such a formula has a satisfying truth assignment is NP-complete, 
except when the set of allowed relations satisfies one of the following six conditions: 
1. 
2. 
3. 

4. 

5. 

6. 

In 

Every relation holds when all variables are False. 
Every relation holds when all variables are True. 
Every relation is definable by a formula in conjunctive normal form in which each 
conjunct has at most one negated variable. 
Every relation is definable by a formula in conjunctive normal form in which each 
conjunct has at most one unnegated variable. 
Every relation is definable by a formula in conjunctive normal form in which each 
conjunct contains at most 2 literals. 
Every relation is the set of solutions of a system of linear equations over the finite 

field GF(2). 
this paper, we show how this result can be derived from the algebraic structure 

of Boolean relations. This result allows us to describe an efficient test which can be 
applied to any set of Boolean relations in order to determine whether or not they lie 
within one of these tractable classes. The existence of such a test was left as an open 
question in Schaefer’s 1978 paper [ 151. 

2. Definitions and examples 

2. I. Relations and relutionai structures 

We first define the basic terminology of relations and functions. 

Definition 2.1. For any set A and any natural number II, A” denotes the set of all 
n-tuples of elements of A. Elements of A” will be written (al,az,. . . ,a,). 

A subset of A” is called an n-ary relation over A. ’ 
For any binary relation R, the set {a / 3(a, b} f R} is called the domain of R, and 

the set {b / 3(a, b) E R} is called the range of R. 

The following binary relations will be of special interest in this paper: 

Definition 2.2. For any set A we define the following binary relations over A: 
l Equality: q A = {{a, a’) f A2 1 a = a’} 

’ Technically, we should distinguish empty relations of different arities, but we shall neglect this special 
case, in order to simplify the presentation. 
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l Disequality: OA = {(a, a’) E A2 1 a # a’}. 

Definition 2.3. A function f from a set A to a set B, denoted f : A + B, is a subset 

of A x B such that for each a E A there is exactly one bc B such that (a, b) E f. 

If (a, b) E f then we write f(u)= b. 

If it is the case that f(a) = f (a’) implies a = a’, then f is said to be injectiue. 

Definition 2.4. An n-ary operation on a set A is a function cp : A” -+ A. 

If ((a1,a2,..., a,),a,+l) l cp then we write cp(al,az,...,a,)=a,+l. 

If cp(a,a,..., a) = a, for all a E A, then cp is said to be idempotent. 

If cp(al,az ,..., a,)E{al,a2 ,..., a,}, for all al,a2 ,..., a,EA, then cp is said to be 

conservative. 

We will sometimes want to refer to operations with special properties, as specified in 

the following definition. 

Definition 2.5. Let cp be an n-ary operation from A” to A. 

If n = 1 and rp is injective, then cp is called a permutation. 
If there exists an index i E { 1,2,. . . , n} such that for all (ai, ~2,. . . , a,) E A” we have 

cp(a1,a2,..., a,) = f (ai), where f is a non-constant unary operation on A, then cp is 

called essentially unary. 
If this f is the identity operation, then cp is called a projection. 

If n=2 and for all u~,u~,cz~ EA we have cp(cp(a~,a~),a3)=cp(a~,cp(a~,a~)) (ASSO- 

ciativity), and cp(al,az)= cp(a2,al) (Commutativity), then cp is called an AC oper- 

ation. 

If n > 3 and there exists an index i E { 1,2,. . . , n} such that for all al, a2,. . . , a,, E A 

such that I{al,az,..., a,}l<n wehave cp(al,az,..., a,,) = ai, but cp is not a projection, 

then cp is called a semiprojection [14, 161. 

If n = 3 and for all a,a’ E A we have cp(a,a, a’) = cp(a,a’, a) = &a’, a, a) = a, then 

cp is called a majority operation. 
The majority operation on A given by 

cp(X,Y,Z> = 
y if y = z, 

x otherwise, 

is called the dual discriminator on A [ 161, and will be denoted PA. 

If n=3 and for all ul,u2,a3~A we have cp(ai,a2,a3)=ai +az+as, where + is a 

binary operation on A such that (A, +) is an elementary Abelian 2-group [l 11, then 

cp is called a generalised parity operation. 

In order to describe combinatorial problems in algebraic terms, we will make extensive 

use of the notion of a ‘relational structure’ [2, 1 I]. 

Definition 2.6. A relational structure is a pair, (V, Ei(i E I)), consisting of a non-empty 

set, V, and a system, Ei, of finitary relations over V, indexed by the elements of I. 



188 P. Jeavonsl Theoretical Computer Science 200 (1998) IX-204 

The set V is called the universe of the relational structure. 

A relational structure S = ( Y, E;( i E f )} is called Jinite if Y and Z are finite sets. 

In this case we will sometimes write S as (V,:Ei, Ez, . . . , Epl). 

Example 2.7. A (directed) graph is a relational structure with a single binary relation 
specifying which vertices are adjacent. It is usually written (I’, E). 

A complete graph on IZ vertices, denoted K,, corresponds to a relational structure 
(V, Ov), where I’ is a set of cardinali~ n, and 0~ is the disequali~ relation over fr 
defined above. 

A graph in which the edges are labelled with elements of some set L can be written 
as a relational structure (V,Ei(i EL)), where the relation Ei contains all edges labelled 
with i. 

Definition 2.8. The rff~~~~ction of a relational structure (V, Ei(i E I)), is a function p 
from Z to the set of non-negative integers, such that for all i E I, p(i) is the arity of Ei. 

A relational structure S is simdar to a relational structure T if they have the same 
rank function. 

D~~nition 2.9. Let S = (V,&(i f I)) and S’ = (ii’, Ei(i E I)} be two similar relational 
structures, and let p be their common rank function. 

A homomorphism from S to S’ is a function h : V --+ V’ such that, for all i E I, 

(vi,%..., “p(i)) EEL * (h(vl),h(v2)t...,h(vp(i))) c&f* 

The set of all homomo~hisms from S to S’ is denoted Hom(S,S’), 

2.2. Combinatorial problems 

In this section we will demonstrate that a wide variety of standard combinatorial 
problems can be conveniently expressed as subproblems of the follow~g very general 
problem. This allows us to develop a common algebraic theory, in the remainder of 
the paper, which is applicable to all of these problems. 

Definition 2.10. The general combinatorial problem (GCP) is the decision problem 
with 

Instance: A pair of similar finite relational structures, (Si, Sz). 
Question: Is there a homomorphism from Si to S,? 

For any GCP instance P = (S,, &), a homomorphism from Si to Sz will be called a 
solution to P. 

Example 2.11 (GRAPH CO~O~A~ILrTY). An instance of the GRAPH COLORABILITY 
problem [4, 131 consists of a graph G and an integer q. The question is whether the 
vertices of G can be labelled with q colours in such a way that adjacent vertices are 
labelled with different colours. 
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This can be expressed as the GCP instance (G,&), where K4 is a complete graph 

on 4 vertices, as defined in Example 2.7. 

Example 2.12 (CLIQUE). An instance of the CLIQUE problem [4,13] consists of a 

graph G and an integer q, The question is whether G contains a subgraph of q vertices 

which is a clique (that is, isomorphic to a complete graph K4). 

Assuming that G contains no ‘loops’ (in other words, no vertex is adjacent to itself), 

this can be expressed as the GCP instance (Kg, G). 

Example 2.13 ( VERTEX CO V&X). An instance of the VERTEX COVER problem [4, 131 

consists of a graph G = (V,E) and an integer k. The question is whether there is a 

subset V’ g V with 1 V’ j <k, such that fur all (0, W> E E either 2, f Y’ or w E Y’. 

This can be expressed as the GCP instance (iYctvl_kf, ??)? where ?? is the complement 

graph (7, 0~ - E). (This formulation uses the fact that Y’ is a vertex cover if and 

only if V - V’ is an independent set, which corresponds to a clique in the complement 

graph [4,131.) 

Example 2.14 ~~-~~~~~~~~~A~ ~ATC~r~G~. An instance of the ~-DI~~~~I#~AL 

MATCHING problem f43 consists of a relation M of arity k over a set P. The question 

is whether there is a subset M’ L M such that ]M’] = /Vi and no two elements of M’ 

agree in any coordinate position, 

This can be expressed as the GCP instance ((Y, Ov), (M, O&)), where 

~~=(((u1,u2,_.“~tlk),(u~,u~ ,“‘>r~))EM~~UiTI:uf, i=l,2,...,R). 

Example 2.15 (HAh4fLTONIAN CIRCUIT). An instance of the HAMILTONAN 

CIRCUIT problem [4] consists of a graph G = (V,E). The question is whether there 

is a cyclic ordering of V such that every pair of successive nodes in the ordering is 

adjacent in G. 

This can be expressed as the GCP instance ((V> CV, UY)> (V,E, Vt_‘)), where 

Cy is an arbitrary cyclic permutation on Y and 0~ is the d&quality relation over V 

defined above. (The presence of the relation 0~ in both relational structures simply 

ensures that any solution must be injective.) 

Example 2.16 ~~AN~~~~T~~* An instance of the ~AN~w~~T~ problem [4] consists 

of a graph C- (V,E) where V={ul,uz,_.., u,], and a positive integer k. The question 

is whether there is a linear ordering of V such that adjacent nodes in the graph are at 

most k positions apart in the ordering. 

This can be expressed as the GCP instance ((Y, E, Vv), (v,&-, Vv)), where & = 

((vi, uj> E v2 1 ii - jl <k) and V y is the d~seq~ality relation over Y defined above. 

Example 2.17 (GRAPH ISOMORPHLSM)4 An instance of the GRAPH ISOMORPHISM 

problem [4] consists of two graphs G = (V, E} and G’ = (V’,E’) with 1 V I= 1 V’ 1. The 

question is whether there is a bijectiun between the vertices such that adjacent vertices 
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in G are mapped to adjacent vertices in G’, and non-adjacent vertices in G are mapped 

to non-adjacent vertices in G’. 

This can be expressed as the GCP instance ((V, E,@, ( Vr, Et,@), where E = OF-E 
and ,i? = OV, -E’. 

Example 2.18 (UNDIRECTED GRAPH REACHABILITY). An instance of the 

UNDIRECTED GRAPH REACHABILITY problem [ 131 consists of an undirected graph 

G = (V,E) and a pair of vertices, t’, w E Y. The question is whether there is a path 

in G which connects v to w. 

The complementary problem (whether there is 110 path connecting v and w), can be 

expressed as the GCP instance ((V,~,{(~)},{(~)}),({O,l},~~~,~~,{(O)},{(l)})~. 

Example 2.19 (SATISFIAB~~rTYj. An instance of the SATISFIABILI~ problem [4] 

consists of a formula, F, in propositional logic, which is the conjunction of a set of 

clauses, C. Each clause in C is a disjunction of literals, where a literal is either a 

propositional variable or its negation. The question is whether there is an assignment 

of truth values to the variables in 9 such that F is true. 

This can be expressed as the GCP instance {f V,Ec(c E Cj), ((0, l},R,(c E C))}, where 

F is the set of propositional variables used in 9, each & = {(x1,x2,. . . ,npcc,)), where 

x1,x2,. . . ,JQ(~) are the variables appearing in the clause c, and 

& = {@@I ), &2 ), . . . > &p(c))) I h is an assignment of truth values satisfying c}. 

ExampIe 2.20 (CUNSTRA~NT SATISFACTION). An instance of the COMTRAINT 

SATISFACTION problem [lo, 121 consists of a set of variables Y, a domain of values D, 

and a list of constraints C(S), C(&), . . . , C(S,), where each S, is an ordered subset 

of V and the constraint C(Si) is a set of tuples specifying the allowed combinations 

of values for variables in Si. The question is whether there is an assignment of values 

from D to the variables in Y such that every constraint is satisfied. 

This can be expressed as the GCP instance 

((KSI,S2,..., S?n), (Q C(SI )> C(S2), *. .7 w?t))). 

2.3. Subproblems with restricted constraints 

It is clear from the examples above that GCP is NP-hard. 

In the rest of the paper we shall examine how restricting the relational structures 

allowed in problem instances affects the complexity of this decision problem. 

In particular, we shall investigate the effect of restricting the relational structures 

allowed in the second component of each problem instance. We therefore define the 

following family of subproblems of GCP. 

Definition 2.21. Let r be a set of relations. GCP(T) is the decision problem with 

Instance: A pair of similar relational structures, (Si,&), in which the relations of 

S2 are elements of r. 
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Question: Is there a homomorphism from SI to &? 

Example 2.22. Consider the relation C of arity 4 defined as follows: 

C= { (O,l,l,l), 

(l,O,O, 11, 

(l,O,l,O>, 

(l,O, l,l>, 

(O,l, l,O> 1. 

GCP({C}) is th e subproblem of GCP containing all instances (Sl, S2), such that the 

only relation occurring in S2 is C. 

Example 2.23 (GRAPH k-COLORABILITY). Let 0~ be the disequality relation 

over a set V with IV1 = k. 

Examples 2.7 and 2.11 show that GCP({ 0~)) corresponds to the standard GRAPH 

k-COLORABILITY problem [4]. 

In order to define subproblems of the SATISFIABILITY problem, we need to consider 

relations over (0, l} which correspond to sets of models of certain Boolean expressions. 

We therefore make the following definition. 

Definition 2.24. For any positive integer k, the sets of relations Ak and A; are defined 

as follows: 

& = {{0,1}“-(t) 1 t E (0, l}k}, 
A: = ((0, l}k-{t} 1 t E (0, l}“, t has at most one 0 entry}. 

Example 2.25. The elements of Ak are precisely the relations which correspond to 

models of disjunctive clauses of length k involving k distinct variables. 

For example, 42 is the set which contains the following 4 relations: 

l {(0,0),(0,1),(1,1)} (models of 1x1 Vx2); 

l {(0,0),(1,0),(1,1)} (models ofxl Vlx2); 

l {(O,O), (0, l), (1,O)) (models of 1x1 V 1x2); 

l {(0,1),(1,0),(1,1)} (models ofxlVx2). 

The elements of A; are precisely the relations which correspond to models of disjunc- 

tive Horn clauses of length k involving k distinct variables. 

For example, A, H is the set containing the first three relations of 42 listed above. 

Example 2.26 (k-SATISFZABILITY). Examples 2.19 and 2.25 show that GCP(dk) 

corresponds to the k-SATISFIABILITY problem [4]. 

Example 2.27 (HORN-CLAUSE-SATZSFZABILZTY). Examples 2.19 and 2.25 

show that GCP(U,“_, A:) corresponds to the HORN-CLAUSE-SATISFIABILITY problem [ 131. 
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Example 2.28 (NOT-ALL-EQUAL SATISFIABILITY). Let N be the ternary 
Boolean relation confining the following tuples: 

N= {(O,O, l), (0, LO), (l,O,O),{l, LO)* (LO, l), j&l, 1)). 

Example 2.19 shows that GCP( {N}) corresponds to the NOT-ALL-EQUAL SATISFIABILITY 

problem [4,15]. 

Example 2.29 (U~E-r~-T~~EE SA T~SF~AB~L~TY). Let T be the ternary Boolean 
relation containing the following tuples: 

T= {(RR l), (0,1,0),(1,0,0)). 

Example 2.19 shows that GCP( { T} ) corresponds to the ONE-IN-THREE SATISFIABIL~ 

problem [4,15]. 

3. Reductions between problems 

In this section we investigate reductions between the subproblems of GCP defined 

above. 
In order to quantify the complexity of these reductions we need to define the rep- 

resentation and ‘size’ of a problem instance. In order to do this, we shall assume, for 
simplicity, that the (finite) relations in a problem instance are specified by giving an 
explicit list of all their tuples. The size of a problem instance will then be taken to 
be the length of a string encoding the pair of relational structures using some standard 
encoding. 

Proposition 3.1. Let I” be a set of relations over a set D. 
GCP(T U {LID)) is ~Qlyno~~a~-ti~e reducible to GCP(r). 

Proof. Let P = (&,S2) be any instance of GCP(T U (C)D}). We will modify P to con- 
struct an instance P’ of GCP(T), as follows. 

For each relation Ei of $1, and corresponding relation Ci of &, if Ci =oD then 
l for each (~1, zi2) E Ei, remove (~1, ~2) from Ei, and replace all remaining occurences 

of 01 in all the relations of Si with vz (including any remaining occurences in E,); 
l remove Ei from Si and Ci from 5’2. 

Clearly, this construction can be carried out in polynomial-time in the size of P, 
and P’ has a solution if and only if P has a solution. Hence, we have established a 
polynomial time reduction from GCP(T U {CID}) to GCP(T). 0 

It is currently an open question whether GCPfr U {ng)) is always reducible to 
GCP(T) in logarithmic space. If this were the case, then Example 2.18 indicates that 
UNDIRECTED GRAPH REACHABILITY would be solvable in deterministic logarithmic-space, 
which is thought to be unlikely [ 131. 
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We now establish a much more powerful result, which gives very general conditions 

under which logarithmic-space reductions can be obtained. In order to describe these 

conditions, we first define the set of relations which can be ‘generated’ from a given 

set of relations. 

Definition 3.2. The set of relations which is generated by a set of relations, r over a 

set D, denoted r*, is defined to be the smallest set of relations such that: 

1. 

2. 

3. 

4. 

5. 

rgr*; 
(permutation) For any C E r* of arity r, and any permutation 0 with domain 

{1,2,..., r>, {(&(l),Xcr(Z),. . . ,%(I)) I (x1,x2,. . . Jr) E C} E r*; 

(extension) For any C E r* of arity Y, 
*. 

UxlY~2,...,3c,,~,+l) / ~x~,...,-G)Ec, x,+~ ED)ET , 
(truncation) For any C E r* of arity Y ( > l), 

((~l,~2,...,~,-,)13(~I,~2,...,~,)~C)~r*; 
(intersection) For all Ci, C2 E r*, C, n C2 E r*. 

Example 3.3. Reconsider the set AZ, defined in Definition 2.24, consisting of all binary 

Boolean relations which can be defined by a binary disjunction involving 2 distinct 

variables. 

AZ contains the following unary relations: 

- {(O),(l)} (truncation of {(0,0),(O,l),(l,O)}~A2); 

- ((0)) (@u ncaion of{(O,O),(O,l),(l,O)}~{(O,O),(O,l),(l,l)}EA2*); t’ 

- ((1)) (truncation of{(O,O),(l,O),(l,l)}~{(O,l),(l,O),(l,l)}~A2*). 
AZ contains all possible binary relations over (0, 1) (which can all be obtained 

by intersection from elements of AZ, or by extension from the first unary relation 

above. ) 

AT contains a large number of ternary relations, including the following: 

- {(O,O,O),(l,l,O),(O,O,l),(l,l,l)} 

(extension of((0,0),(0,1),(1,1))~((0,0),(1,0),(1,1))~A2*); 

- {(O,O,O), (LO, l), (0, LO), (l,l, 1)) (P ermutation of the above relation); 

- {(O,O,O),(l,l, 1)) (’ t m ersection of the above 2 relations). 

It is left as an exercise for the reader to establish which other ternary relations 

belong to A; (but see Example 4.9 below). 

Now we show how the fact that one set of relations can be generated from another 

can be used to obtain a logarithmic-space reduction between problems. 

Theorem 3.4. Let r and To be sets of relations over a set D. If r. C r*, and lT1 is 
finite, then GCP(To) is logarithmic-space reducible to GCP(T). 

Proof. Assume that r. C r*, and ro is finite. By Definition 3.2, this implies that ro 

can be obtained from r by a finite sequence of permutations, extensions, truncations 

and intersections. Let Z be a minimal sequence of these operations which is sufficient 
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to construct all the elements of ra from r. We shall prove that GCP(&) is logarithmic- 
space reducible to GCP(T) by induction on the length of C. 

Let P = (Sl,&} be any instance of GCP(f0). 
If Z: is empty, then every relation in Sz is an element of r. Hence the result holds 

when .Z is empty. 
Now, assume that Z contains n >O operations, and assume that the result holds for 

all shorter sequences. 
Let 2 be the sequence consisting of the first n - 1 operations of C, and let &’ be 

the set of relations constructed from r by the operations in C’. 
We may assume, without loss of generality, that every C E &J occurs in &, since for 

each C which is not a relation of S2 we can simply extend Sz by adding the relation C 
and extend Si by adding a corresponding empty relation. Since ra is finite, this process 
can be carried out in constant space. 

There are 4 cases to consider, depending on the type of the final operation of C. 
l (permutation) If the final operation of C is a permutation, then S2 has a relation 

C which is obtained by permuting some element of &‘. By applying the inverse 
permutation to C and to the corresponding relation in St we obtain a new problem 
instance P’ with the same set of solutions as P but belonging to GCP(rd). 

l (extension) If the final operation of C is an extension, then S2 has a relation C which 
is obtained by extending some element of r,. By truncating C and the corresponding 
relation in St we obtain a new problem instance P’ with the same set of solutions 
as P but belonging to GCP(&‘). 

l (truncation) If the final operation of C is a truncation, then S;! has a relation C 
which is obtained by ~ncating some element C’ E rd. We construct a new problem 
instance P’ by modifying P as follows. Replace C with C’, and replace the corre- 
sponding relation E in Si with a new relation E’ which is constructed as follows. 
For each e E E, add a new element U, to the universe of St, and set 

E’={{v~,v&..., nr, %) / e = (0, u2,. . . , &) E q. 

It follows from the above construction that P’ has a solution if and only if P has 
a solution, but P’ belongs to GCP(f,‘). 

l (intersection) If the final operation of .Y is an intersection, then S2 has a relation C 
which is obtained by intersecting two elements Ci and C2 of rd. By replacing C 
with the pair of relations Ci, C2, and replacing the co~esponding relation E of Sr 
with two copies of E, we obtain a new problem instance P’ with the same set of 
solutions as P but belonging to GCP(&‘). 

In all cases, we have shown that there is a logarithmic-space reduction from P to a 
problem instance P’ in GCP(T,‘). Hence, by the inductive hypothesis, and the transi- 
tivity of loga~t~ic-space reductions [13], there is a loga~t~ic-space reduction from 
P to some problem instance in GCP(T). 0 

In order to use this result we need to be able to establish whether a given finite set 
of relations, ra, can be generated from another set of relations r. In the next section 
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we shall show that this can be determined from simple algebraic properties of r 

and rc. 

4. Algebraic properties of relations 

The algebraic properties described in this section concern closure operations on sets 

of relations. 

First, we note that any operation on a set can be used to define an operation on 

tuples over that set, by applying the operation at each coordinate position separately, 

as described in the following definition: 

Definition 4.1. Let R be a relation of arity r over a set D, and let cp be a k-ary 

operation on D. 
For all ti,tz,..., tk E R, (not necessarily all distinct) where ti = (dil,diz, . . , dir), we 

define the tuple cp(tl, t2,. . . , tk) as follows: 

We define the relation q(R) to be the set {cp(tl, t2,. . . , tk) 1 tl, t2,. . . , tk E R}. 
Finally, we say that R is closed under cp if q(R) C R. 

Example 4.2. The (unique) majority operation on the set (0, 1) is the dual discrimi- 

nator, p{o,tI (see Definition 2.5). We will denote this operation simply by p. 

The relation C given in Example 2.22 is closed under ,u, since applying the ,u 

operation to any 3 elements of C, as described in Definition 4.1, yields an element of 

C. For example, 

Example 4.3. Let 00 be the disequality relation over a set D, as defined in 

Definition 2.2, and let rp be any injective unary operation on D (i.e. a permutation). 

For all d,d’ ED, we have 

((44 E 00) @ (d #d’) * (cp(d)#rp(d’)) * cp((d>d’))E 00. 

Hence 00 is closed under all permutations on D. 
By a similar argument, the relation N defined in Example 2.28 is closed under all 

permutations on (0, 1). 

If a set of relations is closed under some unary operation, then we can use this fact 

to obtain a logarithmic-space equivalence between problems, as follows: 
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Proposition 4.4. Let r be a jinite set of relations over a set D, let cp be a unary 

operation on D, and let q,(r) be defined as fo~lo~?s~ 

cp(ZT = Iv(C) I c E r). 

Zf every C E r is closed under cp, then GCP(T) is logarithmic-space equivalent to 

GCP((P(0). 

Proof. Any instance P = (St,&) of GCP(T) can be ~ansfo~ed in logarit~ic-space 
to an instance P’ of GCP(q(T)), by replacing each relation C of S2 by the relation 
q(C). If C is closed under 40, then q(C) 5 C, so any solution to P’ is a solution to P. 

Conversely, if h is a solution to P, then $t, (the composition of h and q), is a solution 
to P’. Hence, the transformation which maps P to P’ is a logarithmic-space reduction. 

Similarly, there is a loga~thmi~-space reduction from any instance P’ of G~P(~(~)) 
to an instance P of GCP(T). q 

Definition 4.5. Let r be a set of relations over a set D. Define rD to be the set of 
all operations, 9, on D such that every relation in r is closed under cp. 

Defi~tion 4.6. Let rf be a set of operations on a set D. 
Define Qia to be the set of all relations over D which are closed under every element 

of Qi. 

The mappings D and a establish a Galois connection between sets of relations and 
sets of operations [Z, Ill. By making use of this Galois co~ection we can obtain 
considerable insight into the relationship between different combinatorial problems, as 
the next results indicate. First, we show that if all the relations in some set are closed 
under some operation, then so are all the relations generated by that set. 

Lemma 4.7. Let r be a set of relations. Zf rp E rD then 43 E r*‘>. 

Proof. Follows from Definition 3.2, since the property of being closed under cp is 
preserved by permutation, extension, truncation and intersection. 0 

Example 4.8. It was shown in Example 4.3 that 0, is closed under all permutations 
on D. Hence, by Lemma 4.7, every relation in { VD}* is closed under all pe~u~tions 
on I). The only unary relation with this property is D” = {(d) 1 d E D}, and the only 
binary relations with this property are D 2, 00, and 0~. Hence, { Oo}* contains no 
other unary or binary relations. 

Example 4.9. Reconsider the set AZ, defined in De~nition 2.24. Some elements of AC 
were described in Example 3.3. Using Lemma 4.7, we can obtain more information 
about 4:. 

It is easily verified that every relation in 42 is closed under the unique majority 
operation p on (0, 1). Hence, by Lemma 4.7, every relation in 4; is closed under p. 
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A routine calculation shows that 166 of the 256 possible ternary relations over (0, 1) 

are closed under n. Hence Ai contains at most these 166 ternary relations over (0, 1). 

We now establish the central result of this section, which shows that the set of relations 

generated by a given set of relations is completely determined by the set of operations 

under which it is closed. (This result was suggested by Theorem 2 of [5]). 

Theorem 4.10. For any set of relations, r, over a finite set D, such that q D E r*, 

Proof. We first show that r* C TDa. By Lemma 4.7 we have TD G r*[>. Hence, rDa 

2PDa2r*. 
Now we show, conversely, that TDa G r*. Let R be any element of TDa, let m = IRI 

and let r be the arity of R. 

Let A4 be an m by IDI”’ matrix over D in which the columns are all possible 

m-tuples over D, and construct a new relation S, from R and M, by concatenating 

each element of R to a distinct row of M. The arity of S is therefore r + /Dim, which 

we denote by s. 

Now define 3 = n {C E r* 1 S C C}. Note that s is a finite intersection of elements 

of r*, hence s E r*, by Definition 3.2. 

Denote the elements of S by tl, t2,. . . , t,, where ti = (til, ti2,. . ) tis). Let to = 

@01,to2,..., tos) be any element of 3, and consider the binary relation $J defined by 

The domain of 4 is D”’ (by the construction of S). 

We claim that 4 is a function from D” to D. To establish this claim we need to 

show that for any two values of j and k in the range 1,2,. . . , s, if (ty, t2j, . . . , m, t .)= 

(tlk, t2k,. . . > &k) then toj = tok. But this follows from the fact that if every tuple in S is 

invariant under the permutation which exchanges position j with position k, then every 

element of $ is invariant under the same permutation, because •~ E r* (by assumption), 

so r* contains all relations of the form Ejk = { (dl, d2,. . . , d,) E Ds 1 dj = dk}. 

We now show that 4 E TD. Assume for contradiction that some C E r is not closed 

under 4. By appropriate extensions, truncations and permutations of C we could then 

obtain a relation C’ E r* which was a superset of S, but remained not closed under 

4. However, this implies that to qi C’, hence to @$, which contradicts the choice of to. 

Now, define k to be the truncation of 3 to the first r coordinates. Note that k E r*, 

by Definition 3.2. 

Since 4 E rD, we know that R is closed under 4, by the choice of R, hence the 

truncation of to to the first Y coordinates is an element of R. But to was arbitrary, so 

R = 2 E r*, and the result follows. 0 
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Corollary 4.11. Let r and TO be sets of relations over aJinite set D, such that ro is 

Jinite. If TD & rt, h t en GCP(To) is polynomial-time reducible to GCP(T). 

If, in addition, q n E r*, then GCP(To) is logarithmic-space reducible to GCP(T). 

Proof. If rD C I’: then, by Theorem 4.10, we have (r. U {nD})* C (r U {nD})*, and 

hence r. C (r u {Q})*. 
Hence, by Theorem 3.4, GCP(ro) is logarithmic-space reducible to GCP(rU {ng}), 

and by Proposition 3.1, GCP(To) is polynomial-time reducible to GCP(T). 

Furthermore, if •~ E r * , then a further application of Theorem 3.4 shows that 

GCP(To) is logarithmic-space reducible to GCP(T). 0 

This corollary demonstrates that the complexity of GCP(T) is effectively determined 

by TD. The next theorem uses a general result from universal algebra [ 14, 161 to show 

that the possible choices for rD are quite limited. 

Theorem 4.12. For any set of relations r, on a finite set, at least one of the following 

conditions must hold 
1. P contains a constant operation; 
2. TD contains an idempotent binary operation (which is not a projection); 

3. P contains a majority operation; 
4. TD contains a generalised parity operation; 
5. rb contains a semiprojection; 

6. TD contains essentially unary operations only. 

Proof. The set of operations TD contains all projections and is closed under composi- 

tion, hence it constitutes a ‘clone’ [2, 11, 161. It was shown in [14] that any clone on 

a finite set must contain a minimal clone, and that any minimal clone contains either 

1. a constant operation; or 

2. an idempotent binary operation (which is not a projection); or 

3. a majority operation; or 

4. a generalised parity operation; or 

5. a semiprojection; or 

6. a non-identity unary operation. 

Furthermore, if TD contains any operations which are not essentially unary, then it 

is straightforward to show, by considering such an operation of the smallest possible 

arity, that rD contains an operation in one of the first five of these classes [16]. 0 

In the next section we show that each of these possibilities for TD is associated in a 

very natural way with a well-known complexity class. 

5. Determining complexity 

We now examine each of the 6 possibilities for TD described in Theorem 4.12, 

and investigate the implications for the complexity of the corresponding problem class, 
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GCP(T). Throughout this section, we shall assume that r is a finite set of relations 

over a finite set D with IDI 22. 

Proposition 5.1. If TD contains a constant operation, then GCP(T) can be solved in 

constant space. 

Proof. If TD contains the constant operation which returns the value d, then every non- 

empty element of r must contain the tuple (d,d, . . . , d). Hence, any problem instance 

P = (SI, ST) in GCP(T) either contains an empty relation in 5’~ (associated with a 

non-empty relation in Sl ), in which case it has no solution, or else has a solution 

(the constant function with value d). The decision problem can therefore be solved in 

constant space. 0 

For binary operations we shall restrict our attention to the case of idempotent AC 

operations (see Definition 2.5). 

Proposition 5.2. ZfrD contains an idempotent AC binary operation , cp, then GCP(lJ 

is in P. 

IJ; in addition, TD = {~p}~~ and q 0 E r*, then GCP(T) is P-complete. 

Proof. Theorem 16 of [6] states that the CONSTRAINT SATISFACTION problem is solvable 

in polynomial time if all the constraints are closed under some idempotent AC oper- 

ation. Using Example 2.20, this implies that GCP(T) is solvable in polynomial time, 

when TD contains an idempotent AC binary operation. 

Furthermore, we may assume without loss of generality, that (0, 1) CD, and 

cp(v~,v~)=v~ Av2, for all vl,v2E{O,l}. 

Now, set r, = A? U A$’ U A?. It is easy to show that this set of relations is closed 

under conjunction, so if we consider r, as a set of relations over D, then cp E r$. 

This implies that {~p}~~ C r$’ 
aD 

, which is equal to rz by the general properties of 

Galois connections [2]. 

Hence if TD ={(P}~~, then rD & r$, so by Corollary 4.11, if q D E r*, then 

GCP(&) is logarithmic-space reducible to GCP(T). However, GCP(&) corresponds 

to the HORN-CLAUSE-SATISFIABILITY problem with at most 3 variables per clause, which 

is P-complete [8]. Hence, GCP(T) is P-complete. 17 

For majority operations we restrict our attention to the dual discriminator operation, 

,& (see Definition 2.5). 

Proposition 5.3. If rD contains the dual discriminator operation, pD, then GCP(T) 

is in NL. 

If, in addition, rD = {,uo}aD and q D E r*, then GCP(T) is NL-complete. 

Proof. Let r be a set of relations which is closed under PD. Propositions 10 and 12 

of [6] together imply that GCP(T) can be reduced to GCP(T’), where r’ contains only 
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binary ‘O/l/all’ relations over D, as defined in [3] (see also Proposition 5.3 of [16]). 

These relations are also defined in [9], where they are referred to as ‘implicational’ 

relations. They have the special property that each element of the domain is either 

related to a unique element of the range, or else is related to every element of the 

range, and vice versa. 

A polynomial-time algorithm for GCP(T’) is given in [9], which is essentially a 

generalisation of the standard algorithm for 2-SATISFIABILITY. Informally, the algorithm 

proceeds as follows: while there are unassigned variables, choose an unassigned vari- 

able, v, choose some value to be assigned to v, and then propagate the consequences 

of this decision to all other variables whose value can now be determined. If these 

consequences lead to a contradiction, then undo these assignments and choose a dif- 

ferent value for v, or if all possible values have been tried then report that there are 

no solutions (see [9] for details). 

This algorithm will only report that there are no solutions if there is some vari- 

able for which there are chains of implications starting at each possible value which 

lead to a contradiction. This can be represented as an instance of the DIRECTED GRAPH 

REACHABILITY problem, where the vertices of the graph correspond to (variable, value) 

pairs, and the edges of the graph represent implications. Since DIRECTED GRAPH 

REACHABILITY is in NL [ 131, and NL is closed under complementation, it follows that 

GCP(T) is in NL. 

Furthermore, we may assume, without loss of generality, that (0, 1) 5 D, and 

~D(~I~~2~~3)=~{0,1}(~1~~2~~3) for all v19~2,~3 E 1% 1). 

Now, consider the set of relations 42 defined in Definition 2.24. It is easy to show 

that ,u{o,l) E A?, so if we consider 42 as a set of relations over D, then PD E A!. This 

implies that (~0)~~ C AzDaD, which is equal to A:, by the general properties of 

Galois connections [2]. 

Hence if rD = {,u~}‘~, then rD C Ap, so by Corollary 4.11, if •~ E r*, then 

GCP( 42) is logarithmic-space reducible to GCP( r). However, GCP( 42) corresponds 

to the 2-SATISFIABILITY problem which is NL-complete [ 131. Hence GCP(T) is NL- 

complete. 0 

Proposition 5.4. Zf TD contains a generalised parity operation, q, then GCP(T) is 

in P. 

Proof. If rD contains a generalised parity operation, then every element of r is an 

affine set over the finite field with 2” elements, GF(2)“, and hence contains precisely 

the solutions to some system of linear equations over GF(2). 

Hence, any problem in GCP(T) can be solved in polynomial time, by a standard 

technique of linear algebra, such as Gaussian elimination. Cl 

Proposition 5.5. Zf rD contains projections and semiprojections only, then GCP(T) 

is NP-complete. 
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Proof. Assume, without loss of generality, that (0, 1) C D, and let Let 43 be the set 

of ternary Boolean relations defined in Definition 2.24. It is easy to show that 43 is 

closed under all projections and semiprojections on D. 

Hence, if TD contains only projections and semiprojections, then by Corollary 4.11, 

GCP(A3) must be polynomial-time reducible to GCP(T). However, GCP(A3) corre- 

sponds to the 3-SATISFIABILITY problem (Example 2.26) which is NP-complete [4]. 

Hence GCP(Z’) is NP-complete. Cl 

Proposition 5.6. Zf TD contains essentially unary operations only, then GCP(T) is 
NP-complete. 

Proof. First we note that if TD contains an essentially unary operation cp, then it also 

contains the corresponding (non-constant) unary operation f. 
If f is not injective, then f(D) = {f(d) ( d ED} is strictly smaller than D. Now let f 

be any unary function in TD such that If(D)1 . IS minimal and set f(r) = {f(C) 1 C E r}. 

It follows that f(r)D contains only permutations. 

Since TD contains no constant tinctions (by assumption), we know that If(D)1 > 1. 

There are 2 cases to consider. 

l If If(D)1 = 2 then we may assume without loss of generality that f(D) = (0, 1). 
By Example 4.3, we know that f(QD C {N}D where N is the ternary relation 

defined in Example 2.28. Hence, by Example 2.28 and Corollary 4.11, the NOT- 

ALL-EQUAL SATISFIABILITY problem is polynomial-time reducible to GCP(f(T)). Since 

the NOT-ALL-EQUAL SATISFIABILITY problem is NP-complete [ 15,4], this implies that 

GCP( f (r)) is NP-complete. 

l If I f(D)1 >2 then, by Example 4.3, we know that f(r)D C { O~CO,}~. Hence, by 

Example 2.23 and Corollary 4.11, the GRAPH If(DCOLORABILITY problem is 

polynomial-time reducible to GCP(f(T)). S’ mce the GRAPH ~-COLORABILITY problem 

is NP-complete for k >2 [4], this implies that GCP(f(T)) is NP-complete. 

Finally, by Proposition 4.4, GCP(f(T)) is logarithmic-space reducible to GCP(T), and 

hence GCP(T) is NP-complete. 0 

Now that we have shown that the complexity of GCP(T) is determined by TD, it is 

natural to ask how to calculate r D. The surprising answer to this question is that for 

each possible arity, the elements of r D of that arity are precisely the solutions to a 

particular problem instance in GCP(T), as we shall now show. 

In order to state this result concisely, we will make use of the notion of the product 

of relational structures [ 111. 

Definition 5.7. If S = (V,&(z E I)) IS a relational structure, then for any natural number 

n, the product structure, S” is the relational structure (V”,E,‘(i E I)), where 

((Ull,U12,...,~ln),(V21,U22,...,~2~),..., (op(i)l) Up(i)27 . . . 3 up(+)) EE,! if and only if 

(Vlj, V2j9.. ’ 2 Vp(ilj)EEi forj=1,2 ,..., n. 
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Proposition 5.8. For any relational structure S = (V, Ei(i E I)}, and any operation qn : 

V” + v, 

40 E (Ei(i E I))D M 50 f Hom(S”, S) 

Proof. Follows immediately from Definitions 4.5 and 4.1, and Definition 5.7. 0 

This result implies that for any finite set of relations, 1”, over a set D, the operations 
of arity n under which r is closed are precisely the solutions to the GCP instance 

(S”,S), where S = (D, r). 

6. Application 

In the special case when IDI = 2, the results above yield a very simple derivation of 
the result obtained by Schaefer for the GENERALISED SATISFIABILITY problem [15]. This 
problem is described in the following example. 

Example 6.1 (GENERALLSED SATISFIABILITY). Let S= (D,Ri(i~l)) be a re- 
lational structure with universe D = (0, 1 }. 

An instance of the GENERALISED SATISFIABILITY problem over S [ 15,4] consists of 
a formula, 9, in propositional logic, which is a conjunction of terms of the form 

J&(x1,X2,.**, xp(i)), where the Xj are propositional variables. The question is whether 
there is an assignment of truth values to the variables in B such that 9 is true. 

This can be expressed as the GCP instance ((Y, Ei(i E I’)), (~,R~(i E I’))}, where Y 
is the set of propositional variables used in 9, I’s I is the set of indices, i, such 
that Ri appears in 9, and each Ei contains those tuples (x*,x2,. . . ,xp(i,) such that 

Ri(xl,x2,..*, X&i)) is a conjunct of 9. 

The results above allow us to describe completely the possible tractable subproblems 
of this problem. 

Corollary 6.2. For any set, r, of Boolean relations, if at least one of the following 

conditions holds: 
1. Every relation in I’ holds when all variables are False. 
2. Every relation in F holds when all variables are True. 
3. Every relation in r is de$nable by a formula in conjunctive normal form in which 

each conjunct has at most one negated variable. 
4. Every relation in T is deJinable by a formula in conjunctive normal form in which 

each conjunct has at most one unnegated variable. 
5. Every relation in r is de~nable by a formula in conjunctive normal form in which 

each conjunct contains at most two literals. 
6. Every relation in I’ is the set of solutions of a system of linear equations over the 

finite field GF(2). 
then GCP(T) is in P. Otherwise GCP(T) is NP-complete. 



P. Jeavonsl Theoretical Computer Science 200 (1998) 185-204 203 

Proof. When D = (True, False) there are just two possible constant operations, two 
idempotent binary operations (conj~~tion and disj~ction), one majority operation, one 
generalised parity operation and no semiprojections. In order to be closed under one 
of these operations, all the relations in r must satisfy one of the properties listed [7] 
and this means that GCP(T) is in P, by the results above. 

If r is not closed under any of these operations, then TD must contain essentially 
unary operations only, by Theorem 4.12, so GCP(T) is NP-complete, by Proposi- 
tion 5.6. CJ 

The next result gives a more uniform statement of the criterion for tractability, using 
Proposition 5.8. 

Corollary 6.3. For any finite set, r, of Boolean relations, let P be the GCP instance 

(S3,S), where S= ((0, Ij,T). 
If all solutions to P are essentially unary, then GCP(T) is W-complete, otherwise 

GCP(T) is in P. 

This result shows that we can test any given finite set of Boolean relations, to establish 
whether or not it falls into one of the tractable classes, simply by solving a particu- 
lar instance of the GENERALISED SATISFIABILITY problem involving the given relations 
and containing just eight Boolean variables. This provides a remarkably straightfor- 
ward answer to the question raised by Schaefer in 1978, as to whether any such test 
exists 1151. 

7. Conclusions 

The results presented in this paper lay the fo~~tion for a novel algebraic theory 
of complexity in combinatorial problems. 

We have established a strong link between the study of algebraic closure operations 
and the study of computational complexity. We have also demonstrated the application 
of the results derived in this paper to an important special case. 

These results also give considemble insight into more general cases, when IL)] >2. 
For example, it was shown in [6] that all the classes of tractable constraints which have 
been identified for the CONSTRAINT SATISFACTION problem (Example 2.20) are charac- 
terised by simple algebraic closure properties. 

We expect the link between algebraic properties of relations and computational 
complexity described above to lead to considerable further progress in understanding 
the boundary between tractable and intractable combinatorial problems. For example, 
this work may provide a useful approach to combinatorial problems whose complex- 
ity is not yet fully characterised, such as GRAPH HOMOMORPHISM to a fixed directed 

graph VI. 
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